Abstract

The influence of the geometric arrangement of fiber bundles on the radiative properties of high density woven fiber composites are examined in this paper. Of particular interest is the effect of the polar orientation of fiber bundles on the angular variation of the extinction and scattering coefficients and scattering phase function. The configuration effect is examined by numerical analyses on four types of cross-ply composites with fiber bundles at specific polar inclinations. The numerical analyses utilized the theoretical model that accounts for dependent scattering within, and uncorrelated scattering between, the dense fiber bundles. The extinction and scattering coefficients and scattering phase function are shown to depend strongly on the spatial orientation of the fiber bundles. These results indicate the feasibility of customizing the radiative properties and thus radiative transport by tailoring the geometric configuration of the fiber bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.