Abstract
Although the effect of the conductive polymers PEDOT:PSS on the electroluminescence performance of doped-type organic light-emitting diodes (OLEDs) has been studied, the process of PEDOT:PSS regulation of exciton recombination region and concentration within the deoxyribonucleic acid (DNA)-based doped-type BioLEDs is still obscure. In this study, we fabricated Bio-devices with and without PEDOT:PSS using varying spin-coating speeds of PEDOT:PSS. The Alq3:Rubrene-based BioLEDs achieve higher luminance (44,010 cd/m2) and higher luminance efficiency (8.1 cd/A), which are increased by 186% and 478%, respectively, compared to the reference BioLEDs without PEDOT:PSS. Similarly, the maximum luminance and efficiency of blue TCTA:TPBi exciplex-type BioLEDs are increased by 224% and 464%. In particular, our findings reveal that with an increasing thickness of PEDOT:PSS, the region of exciton recombination shifts towards the interface between the emitting layer (EML) and the hole transport layer (HTL). Meanwhile, the concentration of singlet exciton (S1,Rub) and triplet exciton (T1,Rub) increases, and the triplet-triplet annihilation (TTA) process is enhanced, resulting in the enhanced luminescence and efficiency of the devices. Accordingly, we provide a possible idea for achieving high performance doped-type BioLEDs by adding conductive polymers PEDOT:PSS, and revealing the effect of exciton recombination and conversion in BioLEDs given different PEDOT:PSS thicknesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.