Abstract

Transient electromagnetic (TEM) borehole responses of 3-D vertical and horizontal tabular bodies in a half‐space are calculated to assess the effect of a conductive host. The transmitter is a large loop at the surface of the earth, and the receiver measures the time derivative of the vertical magnetic field. When the host is conductive (100 Ω ⋅ m), the borehole response is due mainly to current channeled through the body. The observed magnetic‐field response can be visualized as due to galvanic currents that pass through the conductor and return in the half‐space. When the host resistivity is increased, the magnetic field of the conductor is influenced more by vortex currents that flow in closed loops inside the conductor. For a moderately resistive host (1000 Ω ⋅ m), the magnetic field of the body is caused by both vortex and galvanic currents. The galvanic response is observed at early times, followed by the vortex response at later times if the body is well coupled to the transmitter. If the host is very resistive, the galvanic response vanishes; and the response of the conductor is caused only by vortex currents. The shapes of the borehole profiles change considerably with changes in the host resistivity because vortex and galvanic current distributions are very different. When only the vortex response is observed, it is easy to distinguish vertical and horizontal conductors. However, in a conductive host where the galvanic response is dominant, it is difficult to interpret the geometry of the body; only the approximate location of the body can be determined easily. For a horizontal conductor and a single transmitting loop, only the galvanic response enables one to determine whether the conductor is between the transmitter and the borehole or beyond the borehole. A field example shows behavior similar to that of our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.