Abstract

The energy levels and binding energies of a hydrogenic impurity in GaAs spherical quantum dots with radius R are calculated by the finite difference method. The system is assumed to have an infinite confining potential well with radius R, which can be viewed as a hard wall boundary condition. The parabolicity of the conduction band profile for GaAs material can be viewed as a parabolic potential well. The energy levels and binding energies are depended dramatically on the radius of the quantum dot and the parabolic potential well. The results show that parabolic potential can remarkably alter the energy level ordering and binding energy level ordering of hydrogenic impurity states for the quantum dot with a smaller radius R.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call