Abstract

Carbon films 110–180 nm thick are fabricated on nickel substrates by the ion sputtering of graphite with simultaneous electron irradiation and subsequent ion irradiation. Irradiation leads to the formation of bonds in the films in various proportions due to the sp and sp 3 hybridization of orbitals (sp-and sp 3-bonds). Ion irradiation induces, to a greater extent, the formation of sp bonds, while concurrent electron irradiation increases the portion of sp 3 bonds. Electron and ion irradiation increases the film microhardness which reaches a value of 12 GPa. A model of the kinetics of creating carbon allotropes in a deposited film is proposed, which is based on the competition between the formation and breakage of carbon bonds during hybridization of different types. Electron and ion irradiation influence the probabilities of the formation and breakage of carbon bonds in the deposited film. The model provides a qualitative interpretation of the observed content ratios of carbon phases in the deposited film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.