Abstract

The purpose of this study was to investigate the time-dependent alteration in whether concurrent aerobic exercise and bone marrow stromal cell (BMSC) engraftment could regulate myogenic differentiation-related signaling pathway in the soleus up to 35 days after sciatic nerve injury (SNI). The rats were divided as follows: the normal control (CON, n=5), sedentary group (SED, n=20), treadmill exercise group (TEX, n=20), BMSC transplantation group (BMSC, n=20), TEX+BMSC transplantation group (TEX+BMSC, n=20) 7, 14, 21, and 35 days after SNI. SNI was applied into the thigh and treadmill exercise was comprised of walking at a speed of 4 to 8 m/min for 30 min once a day. Harvested BMSC at a density of 5×106 in 50-μL phosphate-buff-ered saline was injected into the injury site. Phosphorylated (p) extracellular signal-regulated kinase 1/2 expression was dramatically upregulated in BMSC and BMSC+EX groups from 21 days after SNI compared to those in the SED group. P-ribosomal s6 kinase (RSK) was sharply increased 14 days later, and then rapidly downregulated from day 21, whereas TEX, BMSC and TEX+ BMSC groups significantly kept up expression levels of p-RSK until 35 days post injury than SED group. TEX+BMSC group significantly increased activation of protein kinase B-mammalian target of rapamycin in the soleus from day 14 and myoblast determination protein 1-myogen-in pathways was activated in TEX+BMSC group from day 21. Present findings provide information that combined intervention of aerobic exercise and BMSC transplantation might be a reliable therapeutic strategy for overcoming the morphological and functional problems in denervated soleus muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call