Abstract

In recent years, natural fibers incorporation in polymeric resin has received huge attention among the research community. The reasons of demand are multiple that includes its light weight, environmental friendly nature; non-toxic, low cost, easy availability, low processing cost and most importantly they possess characteristics which are comparable to conventional material. With this approach, present work comprises of fabrication of new category of natural fiber reinforced composites with polymer as base matrix. Sisal fiber is selected as reinforcing phase with epoxy matrix. Four different combination of composites are prepared with sisal fiber loading varies from 2.5 wt. % to 10 wt. % using well-known hand lay-up method. Sisal fibers were treated with NaOH at varied concentration to observe the effect of surface modification and its concentration on the developed material. Three different concentration of NaOH is used i.e. 2 mole, 4 mole and 6 mole for preparing three sets of composites. One set is prepared with raw sisal fiber to make total of four sets of composites. Mechanical properties under investigation are tensile behaviour, compressive behaviour and flexural behaviour. The experimental results obtained are compared for optimizing the concentration of NaOH. From the analysis it is seen that composite with surface modified sisal fiber yield better results and further fiber treated with 2 mole NaOH concentration is superior among their counterpart. The maximum tensile strength, compressive strength and flexural strength obtained are 31.5 MPa, 72.5 MPa and 37.8 MPa respectively. All these values are obtained for fiber treated with 2 mole NaOH aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.