Abstract

Sodium salicylate (NaSA) molecule exists as salicylate anion in acetonitrile (ACN) and water solvents, and exhibits large Stokes shifted fluorescence due to excited state intramolecular proton transfer (ESIPT), with decay times of ∼5 ns in ACN and ∼3.9 ns in water by 300 nm (absorption maxima) excitation. Previous studies report both ground and excited state enol-keto tautomerization in ACN, but only excited state tautomerization in water at 10−4 M. However, the current work explores the effect of concentration and excitation wavelengths on the photoinduced dynamics of ESIPT in the salicylate anion. On increasing the concentration of NaSA, no change in absorption spectra appears in both the solvents, and emission spectra of NaSA in water remain unaffected by changes in concentration or excitation wavelength, whereas, a slight red shift and decrease in FWHM appears in ACN. Time-domain fluorescence measurements show predominantly single-exponential decay throughout the emission profile by 300 nm excitation above the 10−5 M concentration in both the solvents, while by 375 nm excitation, multi-exponential fluorescence decay is observed at low concentrations, and as the concentration of NaSA increases, this decay behaviour tends to converge towards a single exponential decay. These results suggest that solute–solvent interactions stabilize the ground-state intermolecular hydrogen-bonded species at low concentrations, while higher concentrations weaken these interactions, leading to emission solely from the salicylate anion. Peak fit analysis of excitation spectra confirms enol-keto tautomerization in both the solvents, with the keto form being more stabilized in ACN. These findings underscore that in ACN, behaviour of NaSA is influenced by both concentration and excitation wavelength and contrary to previous reports, the keto form of the molecule is also present in water, though at a very low concentration and an increase in non-radiative transitions in water cause fluorescence quenching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.