Abstract

Many organic and organometallic compounds are reduced or oxidized in two steps with the addition or removal of the second electron occurring with greater difficulty than the first. In such EE reactions, a comproportionation reaction can occur in solution near the electrode by which the final product exchanges an electron with the reactant to form two molecules of the intermediate species. Normally, this comproportionation reaction has little or no effect in voltammetry. In this paper, a substantial effect of comproportionation is predicted for the case where the second electron-transfer reaction is irreversible. In steady-state voltammetry, the normally symmetric, sigmoid-shaped second wave is predicted to rise more sharply near its base than is observed in the absence of comproportionation and, in the limit of a very fast comproportionation reaction, an “onset potential” develops at which the current at the second wave increases abruptly from the limiting current of the first plateau. Experimental exampl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.