Abstract

The Air Force has been interested for some time in the development of computer codes that accurately predict the penetrator trajectory created when munitions are fired into concrete and geomaterial targets, as well as the resulting depth of penetration. Recent work has focused on experimental research performed to determine quasistatic, dynamic, unconfined and confined material properties for development of an elastic/viscoplastic constitutive equation. This constitutive equation has shown some promise in predicting stress and strains but lacks a consistent damage parameter to predict damage or fractures exhibited by the target material during experimental impact tests. Current damage level predictors that employ a scalar damage parameter are not sufficient to predict the directional damage or fracture that occurs in simple uniaxial compression tests of concrete and geomaterials. Tensorial or directional damage parameters coupled with constitutive relations are necessary for better understanding and accurate prediction of damage exhibited when munitions impact concrete and geomaterials. The primary objective of the study described herein was to identify, quantify and characterize damage parameters associated with certain constitutive responses of cementitious and geologic materials. To that end, longitudinal wave speed and biaxial strain data were collected simultaneously on a series of grout cubes as they were being loaded to failure in uniaxial compression. The results of these tests, and a comparison to existing related data [1, 2] are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call