Abstract

Abstract This paper investigates the strain sensing properties of carbon black (CB)-filled cement-based composites which were prepared with 120 nm CB. A linear relationship between the fractional change in resistivity and compressive strain was observed for cement-based composites containing a large amount of CB, suggesting that this kind of composite was a promising candidate for strain sensors used in concrete structures. Tunneling effect theory and percolation theory are employed to interpret the conductivity and electromechanical properties of CB-filled cement-based composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.