Abstract
The aim of the present study was to compare the quantity and the type of carbon (C) stored during the 14-year lifetime of a commercial nectarine orchard ecosystem fertilized with mineral or organic fertilizers.The study was carried out in the Po valley, Italy, in a nectarine orchard of the variety Stark RedGold, grafted on GF677 hybrid peach × almond. Since orchard planting in August 2001, the following treatments were applied in a randomized complete block design with four replicates per block and compared: 1. unfertilized control; 2. mineral fertilization (including P and K at planting and N applied as NO3NH4 yearly at the rate of 70–130 kg ha−1); 3. compost application at a rate of 5 Mg DW ha−1 yr−1; 4. compost application at a rate of 10 Mg DW ha−1 yr−1. Compost was obtained from domestic organic wastes mixed with pruning material from urban ornamental trees and garden management after a 3-month stabilization period.Application of compost at the highest rate increased C in the soil; the amount of C sequestered was approximately 60% from amendment source and 40% from the net primary production of trees and grasses with a net increase of C compared to mineral fertilization.Compost application was found to be a win-win strategy to increase C storage in soil and, at the same time, to promote plant growth and yield to levels similar to those obtained with mineral fertilization. The rate of C application is crucial, indicated by the fact that compost supply at the rate of 10 Mg ha−1 yr−1 was the only fertilization strategy of the ones tested that resulted in higher C sequestration. This shows that compost amendment may stimulate an increase in the net primary production of plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.