Abstract

AbstractHigh magnetic field (HMF) and solidification processes were changed during the solidification of both Cu-28 mass %Ag and Cu-72 mass %Ag alloys. The results indicated that the eutectic morphology in Cu-Ag alloys was affected by HMF, composition and solidification parameters. The lamellar spacing of Cu-28 mass %Ag alloy solidified by furnace-cooling was refined by the application of HMF owing to the decreased diffusion coefficient in mushy zone. The lamellar spacing in both Cu-28 mass %Ag sample held at the eutectic temperature and Cu-72 mass %Ag sample by slow controlling cooling was increased by HMF, which might be attributed to the dominated thermolectromagnetic convection. The lamellar spacing in Cu-72 mass %Ag alloys was increased compared with that of Cu-28 mass %Ag alloys because of the decreased growth rates. In Cu-28 mass %Ag alloy, however, fluid transverse velocity gradient was dominate rather than the growth rate and the imposition of HMF had reverse influences on the lamellar spacing. The lamellar-rod transition of Cu phase was promoted by HMF because of the increased Cu volume fraction in eutectic component. These results shed light on the dependence of eutectic morphology in Cu-Ag alloys on composition, external high magnetic field and solidification parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.