Abstract

CO2 adsorption energies on the (100) surfaces of a nickel oxide doped with Mg, magnesium oxide doped with Ni, and their 50:50 solid solution were calculated using density functional theory. The composition and atomic arrangement of the adsorption site were varied to understand how the local environment affects CO2 adsorption and the basicity of the surfaces at the atomic level. The dispersive and electronic contributions to the adsorption energies were quantified, and the results indicate that the variation of the adsorption energy with adsorption site configuration and metal composition is dominated by electronic interactions. Interestingly, for magnesium oxide doped with nickel, a single substitution can create stronger CO2 binding sites, which implies stronger basic sites, even though nickel oxide is less basic than magnesium oxide. The effect of double substitution at the binding site can be reasonably approximated by summing the effects of single substitutions. This work provides guidance for the preparation of metal oxides with tailored Lewis basicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.