Abstract

In order to explore the feasibility of soil leaching and the remediation of agricultural land polluted by medium (heavy) cadmium (Cd), the soil column was used to simulate in-situ leaching, and the citric acid (CA)+ferric chloride (FeCl3) composite leaching agent was selected. Under the optimal concentration combination and the addition amount of the composite leaching agent, the distribution characteristics of Cd in the plow-layer soil and below were investigated. The influence of the leaching process on soil health and the regulation effect of biochar were also investigated. The results showed that:① 0.1 mol·L-1 CA and 0.01 mol·L-1 FeCl3 were the best concentration combinations; under this concentration combination, when the eluent reached 9 pore volume, the content of Cd in the 20 cm soil column was lower than the risk screening value of 0.4 mg·kg-1 (GB 15618-2018) in the corresponding pH value of the tested soil after leaching. ② Under the optimal leaching conditions, the longitudinal distribution of Cd in the 60 cm soil column showed that the content of total Cd increased with the increase in soil depth after leaching, and the leachate of the soil column contained a certain amount of Cd, indicating that the leaching process promoted the downward migration of Cd. The content of available Cd in the soil after composite leaching also increased with the increase in soil depth, which was partly due to the change in exchangeable and carbonate-bound Cd in different soil layers. ③ A portion of the soil health indexes and enzyme activities decreased after CA+FeCl3 composite leaching. The addition of biochar can improve the health status of the soil after leaching; the soil health indexes and enzyme activities were restored significantly, and the risk of Cd reactivation also decreased after the addition of biochar. The results showed that part of Cd in the soil can be leached below the plow layer by CA+FeCl3 composite leaching; however, the leaching process may have a certain impact on soil health, and biochar has a significant effect on the recovery of soil after leaching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call