Abstract

A series of experiments and calculations has been carried out to study the effect of different composite collector designs on InGaP/GaAs/InGaP double heterojunction bipolar transistor breakdown characteristics. A comparison between uncorrected and dead-space corrected models was carried out, and it was found that the dead-space effect is dominant for collector thickness below 300 nm. However, this effect can be neglected for collector thickness larger than 500 nm. The role of lightly doped GaAs (n−-GaAs) and heavily doped InGaP (N+-InGaP) spacer layers is discussed systematically to establish a criterion for designing the composite collector structure. The experimental and theoretical results show that it is necessary to keep the sum of n−-GaAs and N+-InGaP spacer layer thickness below 50 nm to avoid significant degradation of the device breakdown characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.