Abstract

Phytoremediation is considered to be the most environmentally friendly green restoration technology for dealing with mine waste. Adding amendments can improve the substrate environment for plant growth and enhance remediation efficiency. Herbaceous plants have become the preferred species for vegetation restoration in abandoned mines because of their fast greening and simple management. After 8weeks of pot experiments in the early stage, it was shown that the plant height and fresh weight of the plants treated with 5% conditioner and 0.5% straw (C2S2) were significantly higher than those of other treatments. Considering that, in this paper, to explore the effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants, the untreated copper tailings were employed as the control group, whereas copper tailings repaired by ryegrass (Lolium perenne L.), vetiver grass (Chrysopogon zizanioides L.), and tall fescue (Festuca arundinacea) with or without conditioners and straw combination into the compound amendments were taken separately as the test group. After 6months of planting, the pH, electrical conductivity, water content, available potassium, organic matter, total nitrogen, and available phosphorus in the main physical and chemical properties of copper tailings in each experimental area were analyzed. The results showed that the electrical conductivity, organic matter, and total nitrogen content of copper tailings were improved to a certain extent by planting plants without treatment. Meanwhile, compared with the control group, all indexes of planting plants showed an upward trend after adding composite amendments. Among them, pH, water content, and available potassium content of copper tailings were enhanced more obviously. Furthermore, as discovered from the gray correlation analysis results, vetiver grass planted with composite amendments has the best comprehensive effect of improving the physicochemical properties of copper tailings, followed by tall fescue and ryegrass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.