Abstract

AbstractThe improvement of the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) via blending with an aromatic polyamide [poly(m‐xylylene adipamide) (MXD6)] was studied. The compatibilization of the blends was attempted through the incorporation of small amounts of sodium 5‐sulfoisophthalate (SIPE) into the PET matrix. The possibility of a transamidation reaction between PET and MXD6 was eliminated by 13C‐NMR analysis of melt blends with 20 wt % MXD6. An examination of the blend morphology by atomic force microscopy revealed that SIPE effectively compatibilized the blends by reducing the MXD6 particle size. Thermal analysis showed that MXD6 had a nucleating effect on the crystallization of PET, whereas the crystallization of MXD6 was inhibited, especially in compatibilized blends. Blending 10 wt % MXD6 with PET had only a small effect on the oxygen permeability of the unoriented blend when it was measured at 43% relative humidity, as predicted by the Maxwell model. However, biaxially oriented films with 10 wt % MXD6 had significantly reduced oxygen permeability in comparison with PET. The permeability at 43% relative humidity was reduced by a factor of 3 in compatibilized blends. Biaxial orientation transformed spherical MXD6 domains into platelets oriented in the plane of the film. An enhanced barrier arose from the increased tortuosity of the diffusion pathway due to the high aspect ratio of MXD6 platelets. The aspect ratio was calculated from the macroscopic draw ratio and confirmed by atomic force microscopy. The reduction in permeability was satisfactorily described by the Nielsen model. The decrease in the oxygen permeability of biaxially oriented films was also achieved in bottle walls blown from blends of PET with MXD6. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1361–1370, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.