Abstract

Cement stabilisation is a common chemical ground improvement technique. However, the energy-intensive production of Portland cement and its associated high carbon dioxide emissions give soil–cement mixtures a low sustainability rating. Cement treatment of fine-grained soils is particularly problematic due to the relatively high cement contents used in practice (i.e. >12% by mass). Decreasing the amount of cement necessary to ensure appropriate mechanical performance in roadway subgrades, particularly fine-grained subgrades, could rapidly enhance the sustainability rating of cement stabilisation. This work explored the behaviour of low- and high-plasticity clays treated with low cement contents (3–6% by mass). In this experimental study, the small- and large-strain mechanical responses of the materials were evaluated using P-wave velocity and unconfined compression tests, respectively. The results indicate that the small-strain stiffness and strength of soil–cement mixtures is very sensitive to changes in compaction water content and compactive effort. The authors conclude that while the practical application of low-cement–soil mixtures is possible, it requires strict construction control and adherence to very tight tolerances, which makes it impractical for most highway construction projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call