Abstract

The electrochemical performance of NiO–SDC/SDC anode was studied. The anode was compacted by pressing, after which sintering was conducted in a conventional furnace at 1200 °C. A high-energy ball mill was used to mix the Sm0.2Ce0.8O1.9 (SDC) nanopowder and NiO. A pressing technique was applied to fabricate the NiO–SDC/SDC anode cells. The effect of different compaction pressures (200, 300, and 400 MPa) on the performance of the anodes was investigated via electrochemical impedance spectroscopy at an intermediate temperature range (600–800 °C). The nanoindentation technique and Archimedes method, which were used to measure stiffness and bulk density, respectively, revealed that increases in porosity were correlated with decreases in compaction pressure. High electrochemical performance can be achieved if the compaction pressure is decreased and the operating temperature is increased because of hydrogen spillover during the operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call