Abstract

The zeta potential data confirmed the adsorption of the large compact Keggin [Si(W12O40)]4- and heteropolytungstate (LST) anions on both α-Al2O3. The adsorbed [Si(W12O40)]4- ions should form a thick steric barrier, ~1 nm, but this effect was not reflected in the yield stress results. A relatively strong additional attractive force explained the increasing maximum yield stress. A similar result was observed with LST. For the spherical α-Al2O3 the largest maximum yield stress (at zero charge) occurred at 0.6 dwb% additive. This attractive force was attributed to patch charge attraction between the negative additive patch and the positive surface site. For the low surface area platelet α-Al2O3 suspensions, complete surface coverage occurred at a low additive concentration as reflected by an almost identical all negative zeta potential-pH behaviour at all additive concentrations at low pH. The slightly larger yield stress at pH 2.5 could be due to this patch charge bridging attraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.