Abstract
To investigate the effects of combined selective inducible nitric oxide synthase (iNOS) inhibition using 1400 W with nicotinamide (NAD) as a PARS-inhibitor on hepato-splanchnic hemodynamics, O(2) kinetics, and energy metabolism during hyperdynamic porcine endotoxemia. Prospective, randomized, controlled, interventional experiment. Animal research laboratory. Seventeen domestic pigs. After 12 h of continuous i.v. endotoxin (LPS) infusion 17 pigs received either no drug (CON, n=9) or 1400 W, titrated to maintain mean arterial pressure (MAP) at pre-endotoxin level, plus 10 mg.kg.h NAD ( n=8;). Measurements were obtained before, 12 h, 18 h, and 24 h after starting LPS infusion. In addition to systemic and pulmonary hemodynamics and gas exchange, we measured hepatic arterial and portal venous blood flow, liver and portal venous drained viscera O(2) exchange, ileal mucosal-arterial PCO(2) gap, and portal as well as hepatic venous lactate/pyruvate ratios. Expired NO and plasma nitrate levels were assessed as a parameter of NO production. Without affecting cardiac output, therapy maintained MAP and blunted the LPS-induced rise in expired NO levels, attenuated the progressive fall in liver lactate clearance, and blunted the impairment of hepato-splanchnic redox state. The rise of ileal mucosal-arterial PCO(2) gap was not influenced. Combining selective iNOS inhibition with NAD as a PARS blocker may prevent circulatory failure and attenuate the detrimental consequences of LPS in intestinal and hepatocellular energy metabolism. Given the potential hepatotoxicity of high-dose NAD treatment, more potent PARS blockers with higher selectivity might further enhance the benefit of this therapeutic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.