Abstract

A new effect is described of the combined action of an electric field and light on the slow surface dynamics in a layer of nematic liquid crystal (NLC) contacted with a layer of dye pre‐treated by UV irradiation. Simultaneous application of a relatively weak “in‐plane” electric field and polarised light resulted in slow variation of the boundary orientation of the sample transmitted to the bulk of the layer. At the same time, the separate action of the two factors mentioned above did not produce any visible changes in the LC layer at the same intensity and time of application. After turning off both the electric field and light, extremely slow relaxation of the system to the initial state was observed. This effect depends on a number of control parameters (applied voltage, intensity of light, time of application, dose of a preliminary UV irradiation). The critical slowing down of this process (up to some weeks) via a proper choice of control parameters was established. The physical processes responsible for the combined effect were considered and applied to modify a previously proposed phenomenological model for the electrically induced slow azimuthal rotation of the easy axis of an NLC. The modified model was found to be in a qualitative agreement with the main experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call