Abstract

This study was to explore the effects of teramethylpyrazine (TMP) administered in conjunction with neural stem cell transplantation on motor function, pathological lesions and the Janus kinase (JAK)2/signal transducer and activator of transcription 3 signal transduction pathway in rats following acute spinal cord injury (SCI). Female Sprague-Dawley rats were randomly divided into sham, model, neural stem cells (NSCs) and NSCs+TMP groups. Motor function was evaluated using the Basso, Beattie, Bresnahan scale. Spinal cord neuropathies and neuron apoptosis were observed by HE and TUNEL staining. The brain-derived neurotrophic factor (BDNF), Nogo-A, JAK2 and p-JAK2 protein levels were measured by western blot analysis. NSCs+TMP significantly improved rat motor function, attenuated impaired spinal cords, and decreased cellular apoptosis, compared with NSCs therapy alone (P < 0.05). In addition, expression of BDNF protein was significantly higher in NSCs+TMP rats compared with other groups regardless of time postinjury (P < 0.05). The highest expression levels of Nogo-A protein were observed in the model group. The expression of p-JAK2 in the NSCs+TMP group was relatively lower than the model and NSCs groups (P < 0.05). In rats with SCI, NSCs+TMP effectively improved motor function and offered spinal cord protection by increasing BDNF and decreasing Nogo-A levels, as well as inhibiting the JAK2/STAT3 signal transduction pathway, suggesting that TMP could be a useful agent in NSCs transplantation in the treatment of SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call