Abstract
Abstract 3D printed polylactic acid (PLA) composites reinforced with zinc oxide (ZnO) were successfully fabricated by attaching a ZnO dispenser beside a MendelMax RepRap Printer. Mechanical and electrical testings were performed to characterize the properties of PLA/ZnO and cPLA/ZnO composites. PLA polymer filament is a biodegradable material with the same strength and modulus as other plastic materials. This work emphasizes the effects of printing parameters (infill density and raster angle) on the mechanical properties and electrical conductivity of PLA/ZnO composites. The combination of 100% infill density and 0° raster angle resulted in a substantial increase in the tensile strength and Young’s modulus, but reduction in break elongation. As the infill density increased and shifted from 90° to 0° raster angle, the storage modulus was enhanced but the damping factor declined. Scanning electron microscope images proved ZnO was dispersed in the PLA matrix. Optical measurements showed a large air gap across the 35% compared to the 100% infill density. Conductive PLA composites (cPLA/ZnO) enhanced electrical conductivity when increasing infill density compared to PLA composites. Therefore, optimizing printing parameters could help manufacturers provide superior quality structure and cPLA composites for electrical and electronic applications due to good electrical conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.