Abstract

To compare the effect of primary spherical aberration and vertical coma on depth of focus measured with 2 methods. Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique, and Université Paris-Sud, Orsay, France. Evaluation of technology. The subjective depth of focus, defined as the interval of vision for which the target was still perceived acceptable, was evaluated using 2 methods. In the first method, the subject changed the defocus term by reshaping the mirror, which also corrected the subject's aberrations and induced a certain value of coma or primary spherical aberration. In the second procedure, the subject changed the displayed images, which were calculated for various defocuses and with the desired aberration using a numerical eye model. Depth of focus was measured using a 0.18 diopter (D) step in 4 nonpresbyopic subjects corrected for the entire eye aberrations with a 6.0 mm and 3.0 mm pupil and with the addition of 0.3 μm and 0.6 μm of positive primary spherical aberration or vertical coma. There was good concordance between the depth of focus measured with both methods (differences within 1/3 D, r(2) = 0.88). Image-quality metrics failed to predict the subjective depth of focus (r(2) < 0.41). These data confirm that defocus in the retinal image can be generated by optical or computational methods and that both can be used to assess the effect of higher-order aberrations on depth of focus. No author has a financial or proprietary interest in any material or method mentioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call