Abstract

The concept of photo-selective netting using commercial cultivation practices was studied in a tomato (Solanum lycopersicum 'Vedetta') summer cultivation in south Serbia (under high solar radiation 910 W m(-2) , with a photosynthetic photon flux density of 1661 µmol m(-2) s(-1) ), under four different coloured shade-nets (pearl, red, blue and black) with 40% relative shading. The aim of the study was to determine how different environmental control technologies (coloured shade-nets as screen house or plastic-house integrated with coloured shade-nets) could influence plant parameters, production and quality traits in tomato fruits cultivated in south Serbia (Balkan region). The leaf area index (LAI) ranged from 4.6 to 5.8 in open field and plastic tunnels plants (control) with maximum LAI values of 7.9-8.2 in net houses with red colour nets. Shade-grown leaves generally have higher total chlorophyll and carotenoids content than do control leaves. Pericarp thickness was significantly higher tomatoes grown under pearl (7.215.82 µm), red (7099.00 µm) and blue nets (6802.29 µm) compared to other treatments and to control (6202.48 µm). The highest concentration of lycopene was detected in tomatoes grown in plastic houses integrated with red colour nets (64.9 µg g(-1) fresh weight). The plastic house and open field (control) tomato production had a taste index mean value of 1.09-1.10. This is significantly higher than the values determined for the treatments with different coloured shade-nets. These results show that red and pearl photo-selective nets create optimal growing conditions for the growth of the plant and produce fruits with thicker pericarp, the highest lycopene content, a satisfactory level of taste index and can be further implemented within protected cultivation practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.