Abstract

Prior research has demonstrated that fiber-sizings can be designed to yield composite materials that simultaneously possess high energy absorption and structural properties. The improved mechanical properties resulted from control of the fiber surface chemistry and nano-scale topological features within the fiber–matrix interphase. The present study further explains the role of sizing chemistry and surface roughness on composite material performance. Model and commercial glass fiber epoxy specimens were fabricated using these fiber sizing systems resulting in interphase regions with varied surface topology and chemical functionality. Micromechanical measurements were performed using the microdroplet adhesion test method to quantify the fiber–matrix interfacial properties. Improvement in energy absorption and interfacial shear strength due to the presence of the nano-scale silica were quantified. Inspection of the failure modes revealed that the existence of colloidal silica promotes crack propagation along a more tortuous path within the interphase that results in progressive failure and contributes to increased energy dissipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call