Abstract

A preceding study (Homma et al 2018 Contrib. Plasma Phys. 58 629–37) presented an advanced model for thermal force whose applicable condition is extended from collisional to relatively low collisional plasma. According to this extended model, the thermal force reduces when plasma collisionality decreases. In the present study, the extended thermal force model has been implemented into a SOL-divertor integrated simulation code SONIC, in order to study the impact on impurity transport in DEMO-relevant scrape-off layer (SOL) plasma, due to thermal force reduction. A set of test simulations has been carried out supposing a reference steady-state operation scenario of the Japanese DEMO fusion reactor concept (JA DEMO). The thermal force has reduced by as much as 20%–70%, reflecting relatively lower collisionality in DEMO SOL plasma. The simulation results have demonstrated that the introduction of the collisionality dependence of thermal force leads to as much as 20%–80% of effective decrease in impurity density and its content ratio widely over the SOL upstream area under the DEMO relevant condition. Compared to the case with the conventional thermal force model, relative change rate of impurity content at representative poloidal positions are as follows: low-field side (LFS) X-point −59%, poloidal top area −22%, HFS upstream area up to −80%, and no major impact around LFS upstream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.