Abstract

Fission fragment angular distributions for three reactions, $^{19}\mathrm{F}+^{182}\mathrm{W},^{19}\mathrm{F}+^{187}\mathrm{Re}$, and $^{19}\mathrm{F}+^{193}\mathrm{Ir}$, are measured in the laboratory energy range of 82--120 MeV. Extracted fission cross sections of the present systems as well as those of three others from literature $(^{19}\mathrm{F}+^{192}\mathrm{Os},^{19}\mathrm{F}+^{194}\mathrm{Pt}$, and $^{19}\mathrm{F}+^{197}\mathrm{Au})$ are compared with the predictions of a statistical model which takes into account the effects of shell, orientation degree of freedom, and collective enhancement in level density (CELD). In all the cases, the standard statistical model predictions overestimate the measured fission cross section, indicating the presence of some amount of dynamical effects in the exit channel. A dissipation strength of $2\ifmmode\times\else\texttimes\fi{}{10}^{21}\phantom{\rule{4pt}{0ex}}{\mathrm{s}}^{\ensuremath{-}1}$ is found to be sufficient to reproduce the data of all the reactions. No scaling of fission barrier height to fit the data is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.