Abstract

The interest around circulating extracellular vesicles and their cargo in diagnostics has greatly increased; however, several pre-analytical variables affect their determination. In this study, we investigated the effects of sample matrix, processing, and plasma storage delay and temperature on extracellular vesicles and their miRNA content. Blood was collected from 10 male volunteers in dipotassium ethylendiaminotetraacetate-coated tubes (K2EDTA), either with plasma-preparation tube (PPT) or without (K2E) gel separator. A stepwise centrifugation was applied to K2E aliquots to obtain platelet-poor plasma (PPP). K2E, PPP and PPT plasma, stored under different conditions, were assayed for extracellular vesicles concentration and size distribution, through dynamic laser light scattering, and microRNAs content, by qPCR. PPP samples were characterized by the lowest extracellular vesicles count and miRNA detectability. Although having no effects on extracellular vesicles total concentration, storage conditions influenced microRNAs detectability, mainly in PPP and PPT samples. Extracellular vesicles-associated miRNAs levels in K2E were, in general, higher than in PPP and to a very limited extent to PPT. Storage temperature and delay did not affect their profile in K2E samples. Extracellular vesicles count and extracellular vesicles miRNA profile changed under the analyzed pre-analytical variables, showing the greatest stability in K2E samples. Since pre-analytical variables differently affected extracellular vesicles and their miRNA content, they should be considered in each experimental setting and clinical routine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.