Abstract

Background and ObjectiveCartilage cracks and fissures may occur due to certain daily life activities such as sports practice, blunt trauma, and matrix fibrillation during early osteoarthritis. These cracks could further grow at the macroscopic level, alter the load distribution pattern in the matrix, limit the joint range of motion, and disturb chondrocytes synthesis. Cracks' shape and deformations in the loaded cartilage may affect the subsequent mechanobiological processes in the long term, likely because of the altered fluid exchange and excessive local deformations in the vicinity of the damage site. The fibrillar structure of the cartilage matrix appeared to have a protective effect against excessive deformations and tissue failure. Hence, in the present study, a fibril reinforced biphasic cartilage model was used to assess the potential role of different fibril orientations on the profile of a vertical crack in cartilage after applying a compressive load. MethodsA 20 × 20 × 1.5 mm3 cartilage model was developed with a 0.7 mm length V-shape cut at the center. Using an impermeable indenter, a 27% compression was applied to immature, mature, and isotropic cartilage models. Each of immature and mature groups had 4 different split line directions with respect to the cut edges, including 90°, 45°, 0°, and random orientation. The latter represented the disrupted collagen fibril orientations in early osteoarthritis. The model was verified with the experimental results in the literature. ResultsIn the superficial zones, the larger angle between the split lines and cut edges resulted in a wider cut opening. In the absence of collagen fibrils, the isotropic model resulted in a closed edge profile. Also, under a consistently applied compression, the OA model, with random collagen fibril distribution on its surface, had the smallest load-bearing capacity compared to the other models. ConclusionsFindings highlighted a primary role of collagen fibrils on the cut profile, which was more pronounced at dynamic rather than static conditions. Split lines perpendicular to the cut edges had some protective effects against the large dislocation of cut edges. These findings could be utilized to develop engineered tissues less susceptible to rupture. Moreover, the outcome of the present study can explain the potential causes of the crack propagation path reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.