Abstract

The effects of cold temperature on resting membrane potential (RMP) and membrane potential responses to depolarizing electrical current and intramural nerve stimulation were examined in opossum esophageal circular smooth muscle. Intracellular recordings were made in smooth muscle strips obtained from 7 to 8 cm (proximal site) and 1 to 2 cm (distal site) above the lower esophageal sphincter. RMP was not affected by changes in temperature between 34 and 22 degrees C. Cooling caused progressive inhibition of the amplitude and a slight increase in the duration of the spike potential produced by depolarizing current. Cooling did not modify the threshold for spike potential generation but decreased the spike amplitude from 34.0 +/- 0.5 mV at 34 degrees C to 14.1 +/- 2.2 mV at 22 degrees C (P less than 0.01). Electrical field stimulation with single electrical pulses (1.0 ms) produced tetrodotoxin-sensitive biphasic membrane responses consisting of initial hyperpolarization, or an inhibitory junction potential followed by depolarization that increased in amplitude as temperature was decreased from 34 to 26 degrees C and then decreased in amplitude as temperature was further decreased. At both proximal and distal sites cooling from 34 to 22 degrees C caused more than a twofold increase in the duration of hyperpolarization and time to peak depolarization. However, the increase in the absolute time of the duration of hyperpolarization and the time to peak depolarization was significantly greater at the distal than proximal esophageal site. Cooling to 16 degrees C decreased RMP and nearly abolished the biphasic membrane potential response.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.