Abstract

Objective: Cold stress is an important current issue and implementing control strategies to limit its sometimes harmful effects is crucial. Cold is a common stressor that can occur in our work and our occupational or leisure time activities every day. There are substantial studies on the effects of chronic stress on memory and behavior, although, the cognitive changes and anxiety disorders that can occur after exposure to chronic intermittent cold stress are not completely characterized. Therefore, the present study was undertaken with an aim to investigate the effects of chronic intermittent cold stress on body weight, food intake and working memory, and to elucidate cold stress related anxiety disorders using cognitive and behavioral test batteries.Methods: We generated a cold stress model by exposing rats to chronic intermittent cold stress for 5 consecutive days and in order to test for the potential presence of sex differences, a comparable number of male and female rats were tested in the current study. Then, we measured the body weights, food intake and the adrenal glands weight. Working memory and recognition memory were assessed using the Y maze and the Novel Object Recognition (NOR) tasks. While, sex differences in the effects of chronic stress on behavior were evaluated by the elevated plus maze (EPM), open field maze (OF), and Marble burying (MB) tests.Results: We found that 2 h exposure to cold (4°C) resulted in an increase in the relative weight of the adrenal glands in male rats. Given the same chronic stress 5 days of cold exposure (2 h per day), increased weight gain in male rats, while females showed decreased food intake and no change in body weight. Both sexes successfully performed the Y maze and object recognition (OR) tasks, indicating intact spatial working memory performance and object recognition abilities in both male and female rats. In addition, we have shown that stress caused an increase in the level of anxiety in male rats. In contrast, the behavior of the female rats was not affected by cold exposure.Conclusion: Overall, the current results provide preliminary evidence that chronic intermittent cold stress model may not be an efficient stressor to female rats. Females exhibit resilience to cold exposure that causes an increase in the level of anxiety in male rats, which demonstrates that they are affected differently by stress and the gender is an important consideration in experimental design.

Highlights

  • Stress is a long-observed physiological reaction that occurs when there is pressure or aggression in our environment and has become popular in recent years

  • There was no effect of chronic intermittent cold stress on adrenal glands weight in female rats (P > 0.05)

  • This study showed that chronic intermittent cold stress causes an increase in body weight and relative adrenal gland weight only in male rats but not in females suggesting potential adaptation of the HPA axis

Read more

Summary

Introduction

Stress is a long-observed physiological reaction that occurs when there is pressure or aggression in our environment and has become popular in recent years. The local servomechanisms as well as the precise and delicate interactions between several systems including the behavioral, neuroendocrine and autonomic responses induced by stressful situations serve to maintain or restore a dynamic equilibrium called homeostasis. When the physiological response to stress becomes excessive and prolonged, homeostasis is disturbed and the functioning of body systems is affected, that could trigger adverse health problems related to stress (McEwen, 2000, 2004). Exposure to a stressful situation affects almost all body systems, especially behavior and physiology. Various physiological and behavioral changes following stress have been documented in humans (van der Kolk, 1996) and animals (Bowman et al, 2003)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call