Abstract
One of the mechanisms thought to cause injury in preserved organs is the formation of oxygen free radicals. The cell is protected from oxidative stress by many defense mechanisms. A major defense mechanism involves glutathione and glutathione-dependent enzymes. During organ preservation by simple cold storage the loss of glutathione may sensitize the organ to free radical damage after transplantation. In this study we show that glutathione is depleted from the rabbit liver, kidney, and heart cold-stored (5 °C) for up to 72 h in the UW solution without glutathione. In the first 24 h kidney glutathione decreased to 84 ± 3% of control values, liver glutathione decreased to 49 ± 3% of control values, and heart glutathione decreased to 73 ± 3% of control values. After 48 h of storage the kidney and liver lost an additional 30 and 20%, respectively, whereas heart glutathione changed very little. By 72 h all three organs had lost more than 50% of the glutathione found in freshly obtained tissue. To determine if glutathione added to the UW solution can effectively prevent this loss of glutathione during preservation, hepatocytes were cold-stored for up to 72 h in a preservation solution with and without glutathione. We found that adding glutathione to the preservation solution slowed the rate of loss of glutathione from the cells. These data suggest that at hypothermia the cell may be permeable to GSH. Methods to suppress the loss of glutathione during preservation of organs may be an important factor in suppressing oxygen free radical injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.