Abstract

In animals, cooling substances such as menthol are perceived as cold sensation because they bind to the same receptor TRPM8 (transient receptor potential melastatin) that activates upon temperature drops. We investigated the effect of menthol on the plant membrane potential to search for analogies between animal and plant perception systems. The study was conducted on the liverwort Conocephalum conicum- a non-vascular plant generating action potentials (APs) in response to different stimuli including cold. (+)Menthol, (-)menthol and (+/-)menthol induced one or more APs, depending on the concentration. In contrast to animal reactions to menthol, threshold concentrations of these isomers were the same (1 mM). The presence of menthol in medium shortened cold-induced APs, whereas low temperature prolonged the repolarization phase of AP evoked by menthol. Cells of C. conicum with anion and potassium channels blocked by anthracene-9-carboxylic acid (A9C) and tetraethylammonium chloride (TEACl) generate short spike-like voltage transients (VTs) in response to cold and light stimulation. Membrane potential changes evoked by menthol in A9C- and TEACl-treated plants differed significantly from VTs - lasted much longer and frequently occurred in series. 5 mM LaCl(3) , 1 mM EGTA (ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid) (0 Ca(2+) ) but not 0.2 mM verapamil blocked the putative calcium component of AP induced by menthol. Similar inhibitory effect was observed after the application of proton pump inhibitors: 0.05 mM N,N-dicyclohexylcarbodiimide (DCCD), 0.05 mM diethylstilbestrol (DES) or 0.01 mM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). Our results indicate that cold and menthol act independently, activating different membrane transporters in C. conicum cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call