Abstract
The research in this thesis investigated the effects of cold stress on neuromuscular function with the main focus on cold acclimation. In total, 6 studies, 1 field study and 5 experiments, were conducted. The field study showed that during manual work in cold weather, finger and hand temperature can drop to levels that may impair manual function. The first 2 experiments were conducted to investigate the effect of acute local cold stress on force control and to investigate the effect of cold-induced vasodilatation (CIVD) on neuromuscular function. In experiment 1, it was found that cooling of the hand in 10 °C cold water for 10 min did not improve force control, although neuromuscular function was significantly impaired after cooling. In experiment 2, cold-induced vasodilatation, occurring after 20 min of 8 °C cold-water immersion of the hand, was confined to the finger tip and had no effect on the temperature of the first dorsal interosseus (FDI) muscle or its neuromuscular function. A series of cold acclimation studies was conducted to investigate the effect of repeated cold-water hand immersions on neuromuscular function. In these experiments, neuromuscular function was tested before and after 2–3 weeks of daily hand immersion in 8 °C cold water for 30 min. In experiment 3, it was found that 3 weeks of cold-water immersion resulted in a decrease in minimum and mean index finger temperature and CIVD was attenuated. Neuromuscular function was not affected by this change in temperature response. In experiment 4, one hand was exposed daily to cold water and compared with the opposite control hand. Blood plasma catecholamine concentrations were increased after 2 weeks in the cold-exposed hand, but no changes in temperature response or neuromuscular function were found after repeated cold exposure. Thermal comfort after 30 min of cold-water immersion significantly improved after repeated cold exposure causing a discrepancy between actual and perceived temperature and it was suggested that this may impose a greater risk of cold injury owing to a change in behavioural thermoregulation. In the last experiment, core temperature was elevated by bicycling at a submaximal level during the cold hand immersion. Exercise had a direct effect on the temperature response during cold-water immersion, decreasing the minimum FDI temperature and slowing down the deteriorating effect of cold on neuromuscular function; however, exercise showed was no effect on local cold acclimation. It is concluded that local repeated cold exposures may improve finger and hand temperature and subjective thermal ratings, but that these changes are too small to improve neuromuscular function. The best remedy to maintain manual function is to limit or avoid cold stress as much as possible. If sufficient protection of the hands is impossible, core heating through exercise or passive heating may be a solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.