Abstract

Coir-fiber-reinforced epoxy resin composites are an environmentally friendly material, and the use of coir fibers improves the mechanical properties of epoxy resin. In order to improve the interfacial adhesion between coir fibers and the epoxy resin matrix, microwave treatment, alkali treatment, acetic anhydride modification, 3-aminopropyltriethoxysilane modification and their reasonable combination method treatments were carried out on coir fibers, respectively. Scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were used to analyze the effects of the different treatments on the characteristics of the coir fibers, and single-fiber pullout tests were performed on the pullout specimens made from the above coir fibers. The results calculated by the proposed estimation method show that the combination method of alkali treatment and 3-aminopropyltriethoxysilane surface modification could better enhance the interfacial bonding ability between coir fibers and epoxy resin with an interfacial shear strength and pullout energy of 6.728 MPa and 40.237 N·mm, respectively. The principal analysis shows that the method can form both mechanical interlocking and chemical bonds at the interface to enhance the interfacial bonding ability. This study provides a more suitable method for improving the interfacial properties of coir-fiber-reinforced epoxy resin composites and has implications for the study of natural fiber composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.