Abstract

Municipal solid waste (MSW) landfills in seismic zones are subjected to the seismic forces both in the horizontal and vertical directions. The stability of landfills against these seismic forces was evaluated by computing the factor of safety of landfills with different modes of failure among which failures of landfills due to translation are very common. Conventionally, the seismic stability of landfill is evaluated by using pseudo-static limit equilibrium method. In the present study, seismic stability of landfills is evaluated by both the conventional pseudo-static and modern pseudo-dynamic method. The pseudo-dynamic method is superior as it takes into account the effect of duration and frequency of earthquake motion and corresponding body waves in addition to the variation of earthquake accelerations along depth and time. In the present study, the effects of cohesion and fill amplification on seismic stability of landfill are also taken into account. It was noticed that, neglecting cohesion of fill material as well as liner material, results in a lower factor of safety and, hence, a very conservative/uneconomic design. Also, fill amplification is found to reduce the factor of safety values computed only by using the pseudo-dynamic method, showing its advantage. Generalized expressions are developed for factor of safety and yield acceleration against translational failure, which can be used for evaluating the seismic stability of MSW landfills. Comparisons of results under static condition with existing, similar methodology show a very good agreement. However, the present study seems to provide unique results for the seismic case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call