Abstract

The effects of matrix/precipitate interface states on coarsening of Co and γ-Fe precipitates in a Cu–4 wt.%Co and a Cu–2 wt.%Fe alloy aged at 500 and 700 °C have been examined by transmission electron microscopy (TEM) observations, electrical resistivity measurements, and length-change measurements. Analyses of TEM images show that the average radius for coherent/semi-coherent transition is 6–12 nm for the Co precipitates and 10–20 nm for the γ-Fe precipitates. The coarsening rates of the Co and γ-Fe precipitates are unchanged by the transitions in coherency of the precipitates. The interface energies γ of coherent Co and γ-Fe precipitates are estimated from data on coarsening alone as 0.15 and 0.27 J m−2. From length-change measurements of the Cu–Co and Cu–Fe alloys during aging, the estimates of the isotropic misfit strains of Co and γ-Fe precipitates are −0.018 and −0.016 for the coherent interfaces and −0.013 and −0.012 for the semi-coherent interfaces. Free energy analyses for the coarsening of Co and γ-Fe precipitates reveal that the values of γ of semi-coherent Cu/Co and Cu/γ-Fe interfaces are 0.24 and 0.34 J m−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call