Abstract

An experimental study is carried out to investigate the effect of coherence and polarization on the polychromatic partially coherent dark hollow beam (PCDHB). The experimental results show that the spatial coherence and source polarization affect the dark region of the generated hollow beam. The study shows that by varying the source degree of polarization (DOP), we get a tunable dark region. We find that the longer the spatial coherence length of the input beam, the larger the central dark size of the resultant PCDHB. Further, it is shown that polychromatic PCDHB with low spatial coherence travel a longer distance without being distorted than a beam with a high spatial coherence. These kinds of polychromatic beams may find potential application in the field of polychromatic light based free-space optical (FSO) communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call