Abstract

BackgroundSwarna Jibanti scientifically known as Coelogyne cristata Lindley (Orchidaceae), an orchid mentioned in Ayurvedic medicine is used to promote healthy life span. Objective(s)The present work was planned to study the efficacy of hydro-alcoholic extract of pseudobulbs of C. cristata (CCE) to assess its role on chronic fatigue syndrome (CFS) induced behavioural and biochemical changes in aged Wistar rats compared to Panax ginseng (PG), a prototype anti-stress agent. Materials and methodsCFS was induced by forced swimming for consecutive 21 days for fixed duration (15 min sessions). The criteria of CFS due to fatigue were counted using locomotor activity, depression and anxiety through automated photactometer, immobility time and plus maze activity respectively. Acute toxicity study of CCE (upto 2 g/kg, Limit test) was also performed. For CFS, animals were divided into five groups, naive control, control, CCE treated (25 mg/kg b.w., 250 mg/kg b.w.) and standard PG treated (100 mg/kg b.w.) groups. All drugs were given orally for consecutive 21 days along with CFS. After assessing behavioural parameters, all animals were sacrificed at day 21 and in vivo antioxidant potential of CCE was determined by lipid peroxides, nitrite, catalase (CAT) and superoxide dismutase (SOD) in brain tissue. ResultsCCE was found to be non-toxic. CCE treated aged rats significantly improved (p < 0.001) the spontaneous locomotor movement with respect to control rats, while, decreased the mobility period or depression score. In CFS, CCE also enhanced the time spent (p < 0.001) in open arms while reducing the time spent in closed arm as compared to CFS control, indicating lowering anxiety score. Moreover, marked diminution in lipid peroxidation, nitrite and SOD level was exhibited after CCE treatment and significantly enhanced catalase level significantly (p < 0.01) with respect to CFS control. PG also showed similar actions. ConclusionThe results confirmed the potential therapeutic actions of CCE against experimentally induced CFS in aged rats that might be due to its CNS mediatory antioxidant properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call