Abstract
Zinc oxide nanoparticles (ZnO-NPs) are used in various fields such as industrial, environmental remediation, catalytic, and antibacterial applications. However, their ability to absorb visible light is limited due to their high-energy bandgap and fast electron-hole recombination, which restricts their use. To enhance the efficiency of ZnO-NPs in medical and other applications, surface functionality can be modified through doping. Here, we investigated the effects of S and N doping on the energy bandgap of ZnO-NP and their antimicrobial and antioxidant activities. The results showed that the optical bandgap energy of pure ZnO-NPs was 2.98 eV while that of 6% N-ZnO, 4% S-ZnO, and S4-N6-ZnO was 2.78, 2.69, and 2.63 eV, respectively. The energy bandgap reduction is attributed to the changes in the electronic level of zinc oxide as the result of doping. The crystal size of pure ZnO-NPs, 6% N-ZnO, 4% S-ZnO, and S4-N6-ZnO was 29.06, 27.05, 29.02, and 25.06 nm, respectively, as calculated from XRD data using FWHM. Following the bandgap and particle size reduction, the antimicrobial activities of the dual-doped ZnO-NPs surpassed that of the pure ZnO-NPs. Moreover, dual doping improved the antioxidant activity of ZnO-NPs from 52.45% to 88.89% for the optimized concentration. Therefore, incorporating S and N as dual dopants can enhance the functionality and efficiency of ZnO-NPs in various fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.