Abstract

Nanofiltration ceramic hollow fiber membranes were developed to simplify the manufacturing process and improve water and organic solvent permeation performance. The alumina hollow fiber support was prepared by a phase-inversion/sintering method, and a γ-Al2O3 sol was coated thereon as a selective layer. Polyvinyl alcohol and ethanol were used as the drying control chemical additive in the coating solution, so that a coating layer could be formed without defects in only one coating step. The coating layer thickness could be adjusted to 0.6–2 μm depending on the coating drawing speed. A sintering temperature of 350 °C was selected to provide both reasonable water permeability (6.91 LMH/bar) and rejection (a molecular weight cutoff of 1000 Da or less) and to form a stable γ-Al2O3 phase. In the case of a membrane that was surface-modified with (3-chloropropyl)-trimethoxysilane, the permeability of toluene and hexane was 2.3 and 4.3 LMH/bar, respectively. The newly developed ceramic membrane showed excellent permeability and separation properties, as well as potential effectiveness for organic solvent nanofiltration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.