Abstract
Coated diammonium phosphate (CDAP) is intended to release nutrients steadily in response to the demand of crop growth. A novel biostimulant extracted from Paecilomyces variotii has been shown to regulate gene expression in nutrient transport, enhance nitrogen (N) and phosphorus (P) uptake, and improve nutrient use efficiency. The application of CDAP combined with the Paecilomyces variotii extracts (ZNC) in maize is an efficient approach for reducing waste of resources, improving nutrient supply, and maintaining production stability. The effects of CDAP combined with ZNC on photosynthesis, enzyme activities, endogenous hormone content, maize yield, and P use efficiency (PUE) were investigated in this study. In a pot experiment, CDAP and diammonium phosphate (DAP) were tested together with P levels (1.80, 1.44 g pot–1, P2O5) and two ZNC application rates (0, 4.4 μg pot–1), which included the control treatment that had no P fertilizer added. Results showed that the key influencing elements of maize growth and yield were the soil available-P content, endogenous hormone content, and plant photosynthesis in this study. The combination of DAP and ZNC increased the soil available-P content and the auxin content in leaves at the key stage and hence increased the yield and PUE of maize, compared with DAP. The net photosynthetic rate of CDAP combined with ZNC was higher by 23.1% than that of CDAP alone, as well as by 32.0% than that of DAP combined with ZNC. Moreover, the combination of CDAP and ZNC increased the yield and PUE by 8.2% and 15.6 percentage points compared with DAP combined with ZNC while increasing the yield and PUE compared with CDAP. In conclusion, combining CDAP with ZNC as an environmentally friendly fertilizer could improve photosynthesis-related enzyme activity and enhance the net photosynthetic rate, resulting in an increase in maize yield and PUE significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.