Abstract

The gas contained in coal plays a crucial role in triggering coal and gas outbursts. During an outburst, a large quantity of gas originally absorbed by coal is released from pulverized coal. The role this part of the gas plays in the process of coal and gas outbursts has not been clearly elucidated yet. Therefore, investigating the changes in gas desorption rate from coal particles of different sizes could provide some meaningful insights into the outburst process and improve our understanding of the outburst mechanism. First, combining the diffusivity of coal of different particle sizes and the distribution function of broken coal, we present a gas desorption model for fragmented gas-bearing coal that can quantify gas desorption from coal particles within a certain range of size. Second, the gas desorption rate ratio is defined as the ratio of the gas desorption rate from coal being crushed to that from coal before breaking. The desorption rate ratio is mainly determined by the desorption index (γ) and the granularity distribution index (α). Within the limit range of coal particle sizes, the ratio of effective diffusion coefficient for coal particles with different sizes is directly proportional to the reciprocal of the ratio of particle sizes. Under uniform particle size conditions before and after fragmentation, the gas desorption rate ratio is the square root of the reciprocal of the effective diffusion coefficient. The gas desorption model quantitatively elucidates the accelerated desorption of adsorbed gas in coal during the continuous fragmentation process of coal during an outburst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call