Abstract

The potential effect of CO2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO2 climate scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call