Abstract

In order to cope with climate change and achieve the goal of carbon neutrality, the use of carbonization technology to enhance the performance of cement-based materials and achieve the purpose of carbon sequestration has become a very promising research direction. This paper considers the use of CO2NBW as mixing water for cement-based materials, aiming to improve the carbonization efficiency of materials to achieve the goal of carbon neutrality. This time, the effect of CO2NBW on cementitious filling materials under different aggregate fractal dimensions was studied through uniaxial compression tests and acoustic emission technology. The effect of CO2NBW on the mechanical properties and crack evolution of the material was discussed. The results showed that CO2 nanobubbles significantly improved the strength of cemented filling materials under different fractal dimensions, and the uniaxial compressive strength was most significantly improved by 23.04% when the fractal dimension was 2.7824. In addition, the characteristics of acoustic emission ring counts and energy parameters indicate that CO2 nanobubbles help improve the overall pore structure of the sample, affecting the macroscopic strength. However, the addition of CO2 nanobubbles reduces the limit energy storage ratio of elastic strain energy, which indicates that excessive CO2 concentration may affect the hydration reaction of the cementing material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.