Abstract

<strong>Objectives:</strong> The cross-over in-situ study aimed to evaluate the effect of CO<sub>2</sub> laser (9.3&mu;m) irradiation, in combination with an AmF/NaF/SnCl<sub>2 </sub>rinse on prevention and control of Erosive Tooth Wear (ETW) in human enamel. <strong>Materials and Methods:</strong> Two different settings were tested with, 1) as ETW-prevention (starting from sound tooth surfaces) (Setting-1), and 2) as ETW-control (substrates presented at start an artificial erosive lesion) (Setting-2). Additionally, in in one subset samples were exposed to AmF/NaF/SnCl<sub>2 </sub>solution (Phase I) while in the other no exposure to the Fluoridetin rinse occurred (Phase). 192 samples of human enamel (3x3x1mm) were randomly divided into 4 experimental groups: (C) without treatment (negative control); (F) AmF/NaF/SnCl<sub>2</sub> solution (positive control); (L) CO2 laser irradiation; (L+F) CO<sub>2</sub> laser+AmF/NaF/SnCl<sub>2</sub> solution. 12 volunteers wearing removable devices participated in the study, carrying 8 samples per device. The erosive challenges (4×5min/day) occurred ex-vivo. The surface loss over time was measured using an optical profilometer (n=12 per group). Setting-1 data were analyzed by one-way ANOVA and Setting-2 data by two-way repeated measures ANOVA, both with Tukey post-hoc tests (α=5%). <strong>Results:</strong> Setting-1: groups L (4.59 ±2.95μm) and L+F (1.58&plusmn;1.24μm) showed significantly less surface loss in preventing ETW than groups C and F. Setting-2: in controlling the progression of ETW, L+F was the only group with no significant surface loss between initial erosive lesion (3.65 &plusmn;0.16&mu;m) and after erosive challenge (4.99 &plusmn;1.17μm). <strong>Conclusions:</strong> CO<sub>2</sub> 9.3&mu;m laser application prevented and controlled ETW progression in human enamel, with greater efficiency when combined with AmF/NaF/SnCl2 solution application.*

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.