Abstract
The reaction site time yields (STYs, normalized to CO chemisorption sites) and product selectivity were measured for a series of bimetallic, multiwalled carbon nanotube supported PtCo catalysts with varying Pt/Co ratios for aqueous phase glycerol reforming. The STYs for all products increased by factors of around 2 for PtCo 1:0.5 and 1:1, and a factor of 4 for PtCo 1:5 relative to a monometallic Pt catalyst. The PtCo catalysts had similar hydrogen selectivity (>85%) at glycerol conversions up to 60%. X-ray absorption spectroscopy and scanning transmission electron microscopy characterization revealed that PtCo catalysts adopt monometallic Pt, mixed PtCo alloy, and Pt shell/Co core particle configurations. A linear correlation between the fraction of mixed PtCo alloy particles and the STY was found, indicating that higher Co loading resulted in a higher fraction of mixed PtCo alloy particles (the promoted phase) that provided the STY increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.